HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 SIGNALS AND SYSTEMS

(ECE Branch)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) PART-A

	1	A	$\Lambda I - A$	
Answer all	the questions	s in	Part-A	(5X2=10M)

Q.1	No.	Questions	Marks	CO	KL
1	a)	Define and sketch real exponential signal in different cases.	[2M]	1	
	b)	State the condition for convergence of Fourier series.	[2M]	2	
	c)	State sampling theorem.	[2M]	3	
	d)	Define linear system. When the system is said to be LTI system.	[2M]	4	
	e)	Mention any two properties of ROC of Z-transform.	[2M]	5	

<u>PART-B</u> Answer One Question from each UNIT (5X10=50M)

Q.]	No.	Questions	Marks	CO	KL
		UNIT-I			
2.	a)	Define orthogonal functions. Give some examples of orthogonal functions.	[5M]	1	
	b)	Obtain the condition under which two signals f1 (t) and f2 (t) are said to be orthogonal to each other. Hence prove that $\cos n\omega 0t$ and $\cos m\omega 0t$ are orthogonal over any interval (t0, t0+ 2 π/ω_0) for integer values of n and m.	[5M]	1	
		OR			
3.	a)	Define and sketch the following elementary continuous time signals. i) Unit impulse signal ii) Signum function iii) unit step function	[5M]	1	
	b)	Determine the power and rms value of the signal $x(t) = u(t)$.	[5M]	1	
		UNIT-II			
4.	a)	Find the Fourier transform of a gate pulse of unit height, unit width and centered at t=0	[5M]	2	
	b)	Find the Fourier Transform of $f(t) = t \cos(2t)$	[5M]	2	
		OR			
5.	a)	Find the Fourier series coefficients of the signal x(t)=Sin(w0t)	[5M]	2	
	b)	Explain how Fourier transform is developed from Fourier series	[5M]	2	
		UNIT-III			
6.	a)	State and prove sampling theorem for band limited signals using graphical approach	[5M]	3	
	b)	What is aliasing? Explain its effect on sampling.	[5M]	3	
		OR			
7.		Determine the Nyquist sampling rate and Nyquist sampling interval for the signal $x(t) = sinc^2 (200\pi t)$	[5M]	3	
		UNIT-IV			
8.	a)	What is an LTI system? Explain its properties. Derive an expression for the transfer function of an LTI system	[5M]	4	

Code No: P18ECT02

			C		
	b)	Obtain conditions for the distortion less transmission through a system.	[5M]	4	
		OR			
9.	a)	Let the system function of a LTI system be $1/jw+2$. What is the output of the system for an input (0.8)t u(t)	[5M]	4	
	b)	Explain how Impulse Response and Transfer Function of a LTI system are related.	[5M]	4	
		UNIT-V			
10.	a)	Prove the scaling and time shifting properties of Laplace transform	[5M]	5	
	b)	State and prove initial and final value theorems of z-transform	[5M]	5	
		OR			
11.	a)	Find the Z-transform of the given signal $x(n)$ and find ROC: $X(n) = [sin(w_0n] u(n)$	[5M]	5	
	b)	State and prove time shifting and time convolution properties of z- transform	[5M]	5	
L		*****			

R18

